Mouse nerve growth factor (2.5S) protein

Catalogue No.: PE-019-100

Description: Mouse NGF (2.5S) was isolated from mouse submaxillary glands by method of Mobley et al (1976) and is a form of beta-NGF that has identical biological properties. NGF is known to regulate the survival and development of certain sympathetic and sensory neurons. It is a dimer with 2 identical polypeptide chains and dimeric molecular weight of approximately 26,500 Da. Isolation and purification of NGF from mouse submaxillary glands yields preparations of NGF (2.5S) with identical biological activity but with cleavages at the amino terminus (with the loss of 8 amino acids) and/or at the carboxy-terminus (with the loss of arginine). These preparations are named 2.5 NGF (see reference below).

Batch No.: See product label

Unit size: 100 µg

Other Names: mouse NGF; beta NGF

Accession: NGF_MOUSE

Produced in: Mouse

Molecular Weight: The homodimer has a molecular weight of ~26KDa and the monomer ~13KDa as confirmed by SDS PAGE.

Purity: Greater than 90% (as determined by SDS electrophoresis)

Biol. activity: Tested by stimulation of 8 day old chick embryo dorsal root ganglia.

Form: Lyophilised from 0.1M acetic acid under dry N2 with vacuum. Appears as near-white powder.

Reconstitution: Solution sterile filtered prior to drying.

Storage: Reconstitute with the addition of 100 µl sterile water or phosphate buffered saline and divide into single use aliquots. Flash freeze aliquots in a dry ice ethanol bath and store at -20C to -70C for best results.

Storage: Short term: -20°C. Avoid repeated freezing and thawing. Longer term -70C. See expiration date for shelf-life estimates, actual times may vary depending upon experimental conditions and laboratory handling.

Expiry Date: 12 months upon purchase for dry material. Hydrated material, 5 days at 4C, 30 days -20C, 60 days -70C for highest activity. Avoid repeated freezing and thawing. Use insulated storage containers for best results.


Mouse nerve growth factor (2.5S) protein

BMC Vet Res. 9:226.

Matusica D et al (2013) An intracellular domain fragment of the p75 neurotrophin receptor (p75(NTR)) enhances tropomyosin receptor kinase A (TrkB) receptor function.


General References:

Mobley WC, Schenker A, Shooter EM (1976)